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Abstract  
The National Oceanic and Atmospheric Administration (NOAA) Unified Forecast System 

(UFS) marine reanalysis is a global sea ice ocean coupled reanalysis product produced by the 
the UFS Research-to-Operations (R2O) project. Underlying forecast and data assimilation systems 
are based on the UFS model prototype version-6 and the NG-GODAS release of the Joint Effort 
for Data assimilation Integration (JEDI) Sea Ice Ocean Coupled Assimilation (SOCA). 
Covering the 40 year reanalysis time period from 1979 to 2019, the data atmosphere option was 
applied to the UFS coupled global atmosphere ocean sea ice model components. Assimilated 
observation data sets include extensive space-based marine observations and conventional direct 
measurements of in-situ profile data sets. The release of the UFS-marine interim reanalysis 
product aims to obtain scientific feedback and applications from the broader weather and earth 
system modeling and analysis communities for the development of the next generation operational 
numerical weather prediction system at the National Weather Service (NWS). The released file 
sets are available at https://registry.opendata.aws/noaa-ufs-marinereanalysis, two parts 
1) 1979 - 2019 UFS-DATM-MOM6-CICE6 model free runs and 2) 1979-2019 reanalysis cycle 
outputs. Analyzed sea ice and ocean variables are ocean temperature, salinity, sea surface height, 
and sea ice concentration. Information of the ocean biogeochemical reanalysis capability (based 
on the BLINGv2 model developed at the Geophysical Fluid Dynamics Laboratory) is also 
presented as an additional coupling option for the UFS-MOM6 system. Developed and distributed 
by the Joint Center for Satellite Data Assimilation (JCSDA), the JEDI-SOCA system is available 
at https://github.com/jcsda/soca.  

1. Introduction 
Since the 1980s, the NOAA National Centers for Environmental Prediction (NCEP) has used 

the 3D variational data assimilation (3DVar) approach to provide the ocean state analysis and 
monitoring services [Derber and Rosati (1989)]. Subsequent updates resulted in the 2003 Global 
Ocean Data Assimilation System [Behringer and Xue (2004)] and the ocean analysis component 
of the Climate Forecast System [Saha et al. (2006)] as well. However, the GODAS operational 
environment is now considered to be outdated, since its products demonstrate less than the desired 
accuracy. Specifically, the current system does not support the assimilation of all the ocean 
observations, resulting in a lower quality ocean analysis compared to similar products and uses an 
outdated ocean model version without sea ice model coupling. 

In an effort to develop a community-based, coupled, comprehensive modeling and data assimila- 
tion framework, the National Weather Service (NWS) has launched the UFS project to modernize 
the development and operationalization process for a broad spectrum of end-to-end forecasting 
systems development and operationalization process. The rationale of the UFS project is to max- 
imize efficiencies, leverage new technologies, and enhance predictions. The major UFS project 
components applied as design and implementation principles include: 

• Unification of the data assimilation under the JEDI project 

• Development of the coupled model for Atmosphere–Ocean–Ice–Waves 

• Modernization of the observations processing 

• Unification of the forecast workflow 

• Validation and verification of the analysis and forecast 
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Comprising the core of future operational models for global weather, sub-seasonal and seasonal 
(S2S) forecasting, the new UFS coupled model system is built on the Finite-Volume Cubed-Sphere 
(FV3) dynamical core for the atmosphere, the Modular Ocean Model (MOM6) for the ocean, the 
Goddard Chemistry Aerosol Radiation and Transport (GOCART) for aerosols, the Los Alamos 
Community Ice Code (CICE6) for the sea-ice, the community Noah land surface model with multi-
parameterization (Noah MP/LM4) for land, and the NOAA wave model WAVEWATCH III 
(WW3) for waves. Following the public release of the JEDI-SOCA repository, the NG-GODAS 
developement effort has been focused on the integration of the marine UFS components into one 
system and the prototype production for the operational transition over time. The target applications 
include the climate monitoring of the ocean services and the continuous development of the marine 
data assimilation to provide marine initial conditions for the future coupled NWS UFS forecasting 
systems, e.g., S2S experiments. 

As the key milestone updates and benchmark test results of the UFS and JEDI projects become 
available, the development activities of the ocean data assimilation task have been extended from 
establishing the prototype version of the JEDI-based NG-GODAS system to the interim 40 year 
reanalysis production run of the UFS sea ice and ocean model components. Underlying forecast 
and data assimilation production runs are based on the UFS model prototype version-6 and the 
NG-GODAS release tag of the JEDI SOCA interface. Covering the 40 year reanalysis time period 
from 1979 to 2019, the data atmosphere option of the UFS coupled global atmosphere ocean sea ice 
(DATM-MOM6-CICE6) model was applied with two atmospheric forcing data sets: the Climate 
Forecast System Reanalysis (CFSR) from 1979 to 1999 and Global Ensemble Forecast System 
(GEFS) from 2000 to 2019. Assimilated observation data sets include extensive space-based 
marine observations and conventional direct measurements of in-situ profile data sets. Based on an 
in-house SOCA-science workflow system, the SOCA 3DVar option was used. The climatology of 
the DRAKKAR forcing set (DFS52) is used to correct the climatological bias issue in the CFSR. 

The reanalysis experiment includes two parts: the 1) 1979 - 2019 UFS DATM-MOM6-CICE6 
model free run and 2) 1979-2019 3DVar reanalysis cycle output. A scientific evaluation of the 
NG-GODAS system was conducted for analyzed sea ice and ocean variables: ocean temperature, 
salinity, sea surface height, and sea ice concentration. The model free run result and analysis 
outputs were compared with current operational ocean data assimilation systems including the 
GODAS and CFSR. Validated against the UK MET office EN4 analysis [Good et al. (2013a)] 
product, considerably improved temperature and salinity analysis outputs were obtained from the 
NG-GODAS 3DVar experiments. 

This document consists of the following sections. In section 2 we provide the model configu- 
rations, including the grid and the physical parameterization schemes of the MOM6 and CICE6 
models. A numerical stability requirement of the UFS model free run in long time scale is intro- 
duced in terms of the CICE6 B-grid of the UFS model system. In section 3 and 4 we describe the 
surface forcing bias correction and marine observation data source that we applied for the reanalysis 
experiment. The JEDI SOCA system and reanalysis experiment setup are described in section 5. 
After introducing the experiment results in section 5, we conclude with the summary (Section 
6) to overview the current status and future plans. Developed by the NOAA Geophysical Fluid 
Dynamics Laboratory (GFDL), the BLINGv2 ocean biogeochemical model [Dunne et al. (2020)] 
is also adapted in the NG-GODAS reanalysis with satellite ocean color observations assimilated. 
The preliminary coupled MOM6-BLINGv2 model free run results and its reanalysis outputs are 
provided in Appendix B. 
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2. UFS DATM-MOM6-CICE6 configuration 
Several key configuration input parameters applied in the UFS model forecast runs of the MOM6 

and CICE6 model components are given in Table 1. The MOM6 is the latest generation ocean 
model produced by the NOAA GFDL and is substantially different from the previous MOM 
models. The MOM6 uses a new algorithm, the arbitrary Lagrangian-Eulerian (ALE) algorithm, 
to allow for any type of vertical grid without having to worry about violating CFL conditions. The 
configuration used here is the SPEAR [Seamless System for Prediction and EArth System 
Research; Lu et al. (2020)] 1 degree configuration from GFDL. The ocean and sea ice components 
use a nominal horizontal resolution of 1° with refinement to 1/3° in the meridional direction in the 
Tropics. The ocean model has 75 layers in the vertical, with layer thickness as fine as 2 m near the 
surface, and includes 30 layers in the top 100 m. The vertical grid spacing becomes larger with 
depth, reaching 250 m below 5,000 m. The default vertical coordinate system used in SPEAR is 
the hybrid z-isopycnal coordinate. However, due to issues with spurious spread that have been 
found, our current work with MOM6 is being done with z* coordinates. 

Table 1. Key configuration parameters applied in the runs of the MOM6 and CICE6 models. 
 

Parameters Configurations 

Horizontal resolution 

Total number of grid points 
Model coupling frequency DT 
Atmospheric forcing 

MOM6 vertical resolution 
MOM6 baroclinic time step DT 

MOM6 tracer advection time step DT 
MOM6 Sea surface salinity relaxation 
MOM6 River runoff 

Sea ice categories 

Global 1-deg with tropical refinement to about 0.3-deg 
360x320 

900 sec 

6 hourly,U/V/T/q/MSLP/DSW/DLW/Precip 
75 z* layers with top layer thickness 2m 
1800 sec 

3600 sec 

Monthly WOA climatology;166mm/day 
Dai and Trenberth monthly climatology 
5 

The MOM6 sub-grid-scale physics parameterizations incorporate various features including the 
small-scale mixing of breaking internal tides, the surface mixed layer, and the mesoscale eddies; 
see the detailed description in the paper by Adcroft et al. (2019). The following code block shows 
the portions of the MOM_input namelist file for the parameter options used in the experiment. 

! ===module MOM_MEKE=== 
! USE_MEKE = True 
! If true, use the MEKE scheme: a sub − grid mesoscale eddy 
! kinetic energy budget . 
! === module MOM_lat era l_mix ing_coef fs  === 
USE_VARIABLE_MIXING = True 
! If true, the variable mixing code will be called. 
! === module MOM_set_visc === 
CHANNEL_DRAG = True 
! If true,  the bottom drag is exerted directly on each 
! layer 
! === module MOM_mixed_layer_rest ra t  === 
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MIXEDLAYER_RESTRAT = True 
! If true, a density − gradient dependent re−stratifying 
! flow is imposed in the mixed layer 
! === module MOM_diabat ic_driver  === 
ENERGETICS_SFC_PBL = True 
! If true, use an implied energetics planetary boundary 
! layer scheme to determine the diffusivity and viscosity 
! in the surface boundary layer . 
! === module MOM_tidal_mixing === 
INT_TIDE_DISSIPATION = True 
! If true, use internal tidal dissipation scheme to drive 
! diapycnal mixing, along the lines of St. Laurentetal. 
! (2002) and Simmons et al. (2004). 
! === module MOM_kappa_shear === 
USE_JACKSON_PARAM = True 
! Jackson − Hallberg − Legg (JPO 2008) shear mixing 
! parameterization. 
! === module MOM_tracer_advect === 
TRACER_ADVECTION_SCHEME = "PPM: H3" 
! PPM: H3 − Piecewise Parabolic Method (Huyhn 3rd order) 

CICE version 6.0.0 [Hunke et al. (2020)] was released in March 2018 with new features including 
new icepack version 1.1.0 enhanced rheology options, dynamic array allocation, and a simplified 
initialization procedure, etc. The UFS sea ice model was transitioned to CICE6 in August 2020. 
Three thermodynamics options are available in the current version, the zero-layer thermodynamics, 
the Bitz and Lipscomb model Bitz and Ipscomb (1999) that assumes a fixed salinity profile, 
and a new mushy formulation in which salinity evolves [Feltham et al. (2006)]. The mushy 
thermodynamics option treats the sea ice as a mushy layer in which the ice is assumed to be 
composed of microscopic brine inclusions surrounded by a matrix of pure water ice. Both enthalpy 
and salinity are treated as prognostic variables. We observed that the mushy thermodynamics 
option provides a stable computational result for the sea ice thermodynamics computation. The 
ice_in namelist code block for the thermodynamic and dynamic options used in the experiment is 
given below. 

&thermo_nml 
kitd = 0 
ktherm = 2 
conduct  = ’bubbly’ 
a_rapid_mode = 0.5e−3 
&dynamics_nml 
kdyn = 1 
ndte = 120 
revised_evp = .false. 
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3. Surface forcing 
The surface forcing for NG-GODAS uses a bulk formulation based on Large and Yeager (2004). 

With this bulk formulation the fluxes are calculated from the SST of the MOM6 model and the 
surface fields of the offline atmosphere. Since the model’s SST is considered in the calculations, 
there exists a negative feedback that prevents the model SST from drifting too far away from nature. 
For this reason, relaxation to an SST product (e.g. OISST, OSTIA) is no longer needed and can be 
removed entirely if the model/forcing biases are small enough. Since there is no similar negative 
feedback for ocean salinity, an SSS restoration term is still required. 

The NG-GODAS is forced with a set of atmospheric fluxes from CFSR (1989-2000) and GEFS 
(2000-2019). However, there exist very large known biases in the CFSR fluxes. For instance, in 
the western tropical pacific and Indian ocean, the downward shortwave radiation from CFSR is 
too high compared to other reanalysis products that have been calibrated to fit observations. We 
used the bias correction scheme developed by Sluka (2018) to correct the climatology of the CFSR 
with the DRAKKAR forcing set [DFS52; Dussin et al. (2016)] for the 1989 to 2000 time period. 
In the scheme, multiplicative and additive correction factors are calculated for each month of the 
CFSR-based experiment time period for precipitation rate, downward shortwave, and downward 
longwave, and wind fields. Applying these corrections to the free-run NG-GODAS, yields modeled 
SST with less bias (see Figure 1). 

Fig. 1. Difference in the ocean SST from free-run NG-GODAS compared with OISST, averaged over 1989- 2000. 
Shown is a forced run using uncorrected CFSR fluxes (left) and CFSR fluxes with climatology corrected by DFS5.2 
(right). 

Figure 2 shows the annual mean wind stress compression between GEFS and CFSR in 2000. The 
spatial patterns and magnitudes of wind stress calculated by the bulk formulation were comparable 
between GEFS and CFSR after the forcing bias correction. We further checked the northward 
global ocean heat transport from simulations with and without bias correction. In Figure 3 , after 
applying the climatological correction, the CFSR run (red line) exhibits similar northward global 
ocean heat transport compared to the runs using other forcing (CORE-II and GEFS) along latitude 
lines. 
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Fig. 2. The 2000 annual mean wind stress calculated from bulk formulation: GEFS (lef) and CFSR after bias correction 
(right). 

 
Fig. 3. The 2000 mean northward global ocean heat transport from CORE-II, GEFS, and CFSR simulations 
(top: no bias correction; bottom: bias correction). Also shown are the implied mean northward global ocean 
heat transport derived from air-sea surface heat fluxes using NCEP reanalysis data (NCEP) and the observation- 
based in situ estimates (G&W, Ganachaud and Wunsch (2003)). CORE = Coordinated Ocean-sea ice Reference 
Experiments. 

4. Marine observations 
The marine observations in NCEP operational systems consist of in-situ temperature and salinity, 

sea-ice concentration, satellite sea surface temperature (SST), sea surface salinity (SSS) and 
absolute dynamic topography (ADT). Diverse data conversion and pre-processing steps are applied 
to meet the requirements for observation files and I/O handling involved in different modeling and 
data assimilation systems. Creating a common software system for organizing and storing the vast 
amounts of observation data is highly desirable to maintain current and future operational forecast 
systems in a sustainable way. The JEDI-based Interface for Observation Data Access (IODA, 
https://github.com/JCSDA/ioda) was applied to establish a 40-year historical database of 
marine observations. By using a common netCDF data format, the IODA data processing allows 
a practical approach for the creation of historical databases and the long-term storage of data. 
Figure 4 shows the temporal coverage of the marine observations and data sources that we used in 



8  

the NG-GODAS reanalysis experiment. Figures 5 provides a decomposition of the total observation 
counts by data type applied in the experiment.  

Fig. 4. Temporal coverage of observations assimilated in the reanalysis experiment: remote sensing retrievals and in-
situ profile data from 1979 to 2019. 

 
Fig. 5. Total number of observations (total injected observations in red and assimilated ones in blue) applied in each 
24 hour analysis cycle window: a) SST, b) in-situ temperature, c) in-situ salinity, d) SSS, e) ADT, and f) ICEC. The 
total number of observations injected in the assimilation experiment cycles is marked in red and assimilated ones in 
blue. Quality control schemes applied in the assimilation experiments are described in the Section 5. 

We started the reanalysis cycles with the injection of the in-situ water temperature and salinity 
profile data sets obtained from the World Ocean Database [Boyer et al. (2018)]. In-situ 
observations provide direct measurements relevant to water temperature and salinity. Since the 
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spatial resolution of the in-situ marine measurements is not extensive, satellite observations are 
used to provide uniform coverage in resolving dynamical ocean features. The European Space 
Agency SST Climate Change Initiative [ESA-CCI SST; Merchant et al. (2019)] data sets are as- 
simulated from 1981 onward to constrain the ocean surface conditions. For the calibrated and 
quality controlled water temperature at the depth of 0.2 m, the ESA-CCI SST retrievals are based 
on the Advanced Very High Resolution Radiometer [AVHRR; Embury et al. (2019b)] and Along 
Track Scanning Radiometer [ATSR; Embury et al. (2019a)] observations. Since 2002, the 
AVHRR Global Area Coverage (GAC; 4 km) SST retrievals of the NOAA reanalysis version 1 
(RAN1) were assimilated in our experiment. Produced with AVHRR data from the five NOAA 
and two Metop satellites, the RAN1 SST data sets have been matched up with the reference 
SSTs and the quality controlled in situ SSTs: from the NOAA in situ Quality Monitor (iQuam; 
https://www.star.nesdis.noaa.gov/sod/sst/iquam) and the Canadian Meteorological Centre 
GHRSST Level 4 CMC0.2deg Global Foundation Sea Surface Temperature Analysis product 
(https://www.ncei.noaa.gov/archive/accession/GHRSST-CMC0. 2deg-CMC-L4-GLOB).  

The bias-corrected SSTs with the sensor-specific error statistics (SSES) were processed in the 
JEDI-based IODA data conversion process for the AVHRR RAN1 SST data sets. Satellite SSS 
measurements are a relatively recent technique. We used the passive microwave L-band 
radiometry satellite SSS products from the ESA Soil Moisture and Ocean Salin- ity (SMOS; 
https://earth.esa.int/eogateway/missions/smos/data) and the NASA Aquarius and Soil 
Moisture Active Passive (SMAP; https://podaac.jpl.nasa.gov/SMAP) missions. The SSS 
assimilation covers about 7 years in our experiment, starting with the SMOS data from 2011 and 
the SMAP data from 2015. The ADT observation is the mea- surement of height variations in 
the surface of the sea with respect to the geoid.  The NOAA Radar Altimeter Database System 
[RADS, Scharroo et al. (2013)] ADT data set from 
ftp://ftp.star.nesdis.noaa.gov/pub/sod/lsa/rads/adtx includes the dynamic topography 
measurement of the sea surface height derived by nine altimeter missions: TOPEX/Poseidon, Jason-
1, Jason-2, Geosat, GFO, ERS-1, ERS-2, Envisat, and CryoSat-2.  

The assimilation of the ADT data set was conducted from 1992 to 2019. Although satellite radar 
and laser altimeters allow us to monitor sea ice freeboard thickness, obtaining robust sea ice 
thickness from satellites is still difficult. However, sea-ice concentration remote sensing data sets 
driven by passive microwave satellites have been more widely used since the start of the satellite era 
in 1979. We used the NOAA NSIDC [Cavalieri et al. (1996)] and EMC sea ice concentration databases 
built on the data sets from the Scanning Multichannel Microwave Radiometer (SMMR) instrument 
on the Nimbus-7 satellite and the Special Sensor Microwave/Imager (SSM/I) and Special Sensor 
Microwave Imager/Sounder (SSMIS) and instruments on the Defense Meteorological Satellite 
Program’s (DMSP) -F8, -F11,-F13, -F15, -F16, -F17, and -F18 satellites. Figure 6a shows the data 
count comparison of satellite observations assimilated in the reanalysis experiment. The dominant 
observation types are satel- lite SST retrievals. From 1981, 1 to 2 million SST data sets are 
constantly assimilated in each 24 hour analysis window. When the NOAA RAN1 product became 
available in 2002, the volume of the assimilated SST data further increased. Sea ice concentration 
observations are consistently assimilated in the experiment as well. Temporal resolution of the 
NSIDC data set alternately covers every other day from 1979 to 1987 and then daily from 1987. 
With the EMC-processed SSM/I and SSMIS L2 data sets, about a million sea ice observations were 
assimilated since 2002. Relatively smaller volumes of the SSS and ADT data sets are assimilated: 
SSS with about a million observations since 2015 and ADT with about 0.1 million observations 
since 1993. In-situ observations provide direct measurements relevant to both water temperature 
and salinity based on sources such as ships, moored and drifting buoys, etc. Figure 6b shows the in-

http://www.star.nesdis.noaa.gov/sod/sst/iquam)
http://www.ncei.noaa.gov/archive/accession/GHRSST-CMC0
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situ temperature data counts binned according to depth. Since 2002, the Argo deployment 
contributes to considerably improved spatiotemporal coverage of the in-situ profile data sets. 

 

Fig. 6. Observation counts assimilated in each 24 hour analysis cycle window: a) assimilated remote sensing retrievals 
and b) in-situ temperature data counts binned according to depth. 

5. JEDI-SOCA and experiment setup 
In the JEDI software structure, the object oriented prediction system (OOPS) provides a core 

framework of algorithms that combines generic building blocks for data assimilation application 
algorithms. The programming approach of the OOPS system, mostly written by C++, does not 
require knowledge of actual implementations of specific application model structures or observation 
data information. In the JEDI interface-based programming method, application calls are made 
with a list of the pre-defined OOPS abstract interfaces, rather than by direct calls to any unitary 
application routines or classes. A few articles [Trémolet (2020); Holdaway et al. (2020); Honeyager et 
al. (2020)] introduce a key concept of the JEDI software system, to highlight how different data 
assimilation systems can be seamlessly established through the common software components. 

As a core JEDI application project, the SOCA data assimilation system links the OOPS interface 
classes of Geometry, State, Increment, Model, VariableChange, and LinearVariableChange with 
the MOM6 and CICE6 models. A C++ traits technique is applied to connect the SOCA application 
interfaces to the OOPS abstract interfaces and generic algorithms. In addition to the model 
interfaces, generic marine observation operators and data handling capabilities of the JEDI unified 
observation (forward) operator (UFO) and interface for observation data access (IODA) systems 
are also utilized in the SOCA project. The JEDI UFO contains generic quality control options and 
filters that can be applied to each observation system without coding at certain model application 
levels. User-specified yaml configuration files are only required in the JEDI UFO applications. 
Table 2 shows various observation filters applied in the experiment: bounds check, background 
check, domain check, etc. Observation localization and error inflation schemes were also combined in 
the filtering processes. Additional Blacklist filters were applied in the experiment to filter out the 
ADT data set in the south Pacific and western Australia areas. 

Table 2. JEDI UFO observation quality control filters applied in the reanalysis experiment. 
 

Observations Localization: 

Gaspari-Cohn 

Inflate Error Bound Check Background Check Domain Check 
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SST 

 
SSS 

 
In-situ 
temperature 
In-situ 
salinity 

Ice fraction 

 
ADT 

200km 

 
200km 

 
500km 

 
500km 

 
200km 

 
500km 

factor: 5.0 
lat>60,lat<-60 

 

 

 

 

 

 

 
factor: 5.0 
lat>60,lat<-60 

min: -2 

max: 36 

min: 0.1 

max: 40.0 

min: -2 

max: 36 

min: 1.0 

max: 40.0 

min: 0 

max: 1 

min: -2 

max: 2 
assign error 
[0.5,1.0] 

threshold: 5.0 

 
threshold: 5.0 

 
threshold: 5.0 

 
threshold: 5.0 

 
threshold: 5.0 

 
|threshold|: 0.2 

 

 
SST < 10 

 
T obs error < 0.001 

 
S obs error < 0.0001 

 
SST > 0.9 

 
SST < 5.0 

 
The MOM6-CICE6 coupled data assimilation capabilities of the SOCA have been tested with 

various JEDI OOPS data assimilation algorithms including 3DVar, 3DEnVar, and 3D-FGAT and 
their hybrid variants. The NG-GODAS reanalysis experiment is based on the 3DVar option. The 
estimate of the background error covariance matrix (B) is key to the efficiency and accuracy 
of the 3DVar algorithm. The JEDI system provides the System Agnostic Background Error 
Representation (SABER) bundle to build the background error covariance matrix. In the SOCA 
3DVar application, the construction of the covariance matrix B is decomposed into several linear 
operators: a horizontal correlation operator with the BUMP (Background error on an Unstructured 
Mesh Package; https://github.com/benjaminmenetrier/bump) library, variable transforms of 
multivariate balance operators, parameterizations of vertical convolution and background errors, and 
a horizontal noise control filter. Balance operators for the control variables of temperature, salinity 
and sea surface height follow the cross-correlation schemes implemented by Cooper and Haines 
(1996), Troccoli et al. (2002), and Weaver et al. (2006). Temperature background error variance 
is given as a function of vertical temperature gradient and further modulated by pre- computed 
horizontally varying surface conditions. The SOCA 3DVar yaml input file used for the experiment 
is provided in Appendix A. The MOM6-CICE6 models are initialized at 12:00 UTC in the 24 hour 
analysis window cycles and integrated for 24 hour model forecast. For the model free run and 
3DVar cycle experiment, the CFSR and GEFS Data atmospheric fluxes are given at 6 hour interval. 
The MOM6 initial condition was prepared from the 1/4 degree OM4 files and regridded into 1 
degree resolution. 

Although the sea ice thickness data assimilation option is provided in the current version of the 
SOCA system, we only applied sea ice concentration observation data sets in the reanalysis 
experiment. Thus, maintaining the numerical stability of sea ice thickness calculation is a critical 
step in the reanalysis cycles. We stabilized the sea ice thickness with the climatological sea 
ice thickness using the data sets of the Global Ice-Ocean Modeling and Assimilation System 
[GIOMAS; Zhang and Rothrock (2003)] at each analysis checkpoint step. The GIOMAS data set 
includes monthly ice thickness, concentration, growth/melt rate as well as ocean heat flux from 
1970 to present. Figure 7 shows the GIOMAS sea ice thickness distributions applied in the 
experiment. 
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Fig. 7. Seasonal mean sea ice thickness distributions obtained from GIOMAS data for the 1979-2019 time period: a) 
Arctic DJF (December-January-February), b) Arctic JJA (Jun-July-August), c) Antarctic DJF, and d) Antarctic JJA. 

6. Results 
To allow public access of the NG-GODAS reanalysis experiment results, the experiment output 

files were released through the NOAA Big Data Program (BDP): 
https://registry.opendata.aws/noaa-ufs-marinereanalysis. The AWS opendata registry 
contains the model free runs and 3DVar analysis outputs: daily MOM6-CICE6 diagnostic output 
files from 1979-01-01 to 2019-08-30 for both the model states and observations analyzed in the 
reanalysis experiment. The following diagram shows the directory structure of the released 
experiment results. 

 
− bkg:  analysis and model free run background state files with MOM6/CICE6 

diagnostic outputs 
− ana: analysis model state files 
− incr: Obs increment files 
− rst:  MOM6/CICE6 model restart files with annual frequency 
− ana_config: JEDI analysis input config files applied to 3DVAR reanalysis  experiment 
− 3dvar:   analysis cycle outputs 
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− noda:  UFS DATM−MOM6−CICE6 model free run outputs 

The quality of the reanalysis results are first demonstrated by the observation-model differences of 
each experiment set. Model free run and reanalyzed model fields are also validated in comparison 
with current operational systems and the UK Met Office EN4 ocean analysis product. 

Model free run and 3DVar reanalysis statistics 
The differences between observations and model background (innovation or OmB) and those 

between observations and analysis (OmA) are produced in the IODA files. As diagnostic method 
to quantify the model background and analysis errors in observation space, the OmB and OmA 
statistics provides information on the statistical quality of the analysis experiment and the 
contribution of observations. Global mean time-series plots of the OmB and OmA statistics for 
each observation type are shown in Figures 8 and 9: the error statics are discussed below per 
observation type. Along with the OmB and OmA statistics for the analysis experiment, the 
observation fits to the model free run are reported as well. In this case, the forward observation 
operators are passively applied to the model free run results. Observation errors are needed in the 
variational data assimilation algorithm to determine the weights of the observation and model 
background contributions. Figure 10 shows the observation error statistics of each observation 
type applied the experiment. Although observation data qualities are dependent on observation 
types and vary along with the reanalysis cycles, consistent assimilation convergence is properly 
maintained. No signs of over-fitting to observations or unrealistic artifact in model states are found 
in the global OmB and OmA statistics results as well. 

 
Fig. 8. Global mean absolute errors of observation fits to model free run, model background, and analysis: a) SST, b) 
in-situ temperature, c) in-situ salinity, d) SSS, e) ADT, and f) ICEC. 
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Fig. 9. Global mean errors of observation fits to model free run, model background, and analysis: a) SST, b) in-situ 
temperature, c) in-situ salinity, d) SSS, e) ADT, and f) ICEC. 

Several SST retrievals are assimilated in the experiment: ESA CCI AVHRR (1981-2000), NOAA 
RAN1 AVHRR (2000-2018), and GHRSST microwave and VIIRS (2018-2019) SST products. The 
assimilated SST data count increases after 2002 with the assimilation of the METOPA RAN1 SST 
retrieval data sets: see Figure 6a. The SST analysis statistics are mainly characterized by the 
observation errors of the SST data set and the fit to the model background states. The large sample 
size of the RAN1 SST data set results into the reduced OmB and OmA errors. The performance of 
the SST retrieval processing algorithms are evaluated in the paper by Pryamitsyn et al. (2020): the 
Advanced Clear-Sky Processor for Oceans (ACSPO) for the RAN1 SST data set and the model- 
based Optimal Estimation (OE) method for the ESA CCI SST product. The SST bias and standard 
deviation are validated with the in-situ measurements. The ACSPO-processed SSTs generally 
account for more clear-sky observations and are more accurate than the ESA CCI SST product. 
Atmospheric forcing options also contribute to the UFS model SST biases. Depicted in Figure 9a, 
the SST global mean error statistics shows that the SST cold bias behavior of the model free run 
tends to be amplified with the GEFS forcing. The latitudinal binning of the SST OmB statistics of 
the model free run is shown in Figure 11a. A dominant feature is a cold bias over the most of the 
experiment time period although a seasonally varying warm bias is observed at high latitude areas.  
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Fig. 10. Global mean errors and standard deviations of each observation type: a) SST, b) in-situ temperature, c) in-
situ salinity, d) SSS, e) ADT, and f) ICEC. 

The WOD in-situ ocean profile data sets were used to contain the sub-surface ocean condition. 
Figure 8b and 8c show that the sub-layer temperature and salinity analysis statistics improves with 
the assimilation of the ARGO float data. After 2004, the in-situ observation sample size increases 
considerably and data quality improves with the ARGO data set: Figure 6b and 6c. Figure 8b and 
8c show that the strong seasonal variability of the OmB and OmA statistics identified during the 
pre-Argo time period largely disappears when the Argo data are assimilated. Figure 11b shows the 
vertical binning of the in-situ water temperature statistics of the model free run. As with the SST 
result, the main features are a model cold bias near the surface layers up to 100 m and a warm bias 
at sub-surface layers. 
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Fig. 11. Global mean absolute errors of observation fits to model free run: a) SST (binning applied according to 
latitude) and b) in-situ temperature (binning applied according to depth). 

The SSS assimilation was conducted with the ESA L2 SMOS data set from 2010 and SMAP 
SSS from 2015. The observation instrument types and retrieval algorithms significantly affect the 
SSS retrieval data qualities: antenna type, sampling time, strong land-sea emissivity contrast issue, 
etc. Figure 8d shows that the SMAP data provides improved SSS assimilation results. In the figure, 
the SSS statistics are cross-compared with the in-situ salinity assimilation result as well. 
Seasonally-varying systematic errors and negative bias in the model free run are noticeable featuresin 
the SMOS SSS statistics. But such problems are largely contained with the SMAP and Argo 
salinity data sets. The shift around 2015 and 2016 is the main contributor to the better SMAP SSS 
data quality. 

Figure 8e shows that ADT observations from the Radar Altimeter Data System (RADS) are in 
good agreement with the model results. Relatively small fluctuations are identified but all within 
modest scales. These changes most likely occur with satellite data reductions and transitions in the 
1990s and early 2000s when the ERS-2 and Jason-1 data sets are assimilated. Several sea ice data 
sources are used in the experiment: the SSMR From 1979 to 1987, SSMI from 1988 to 2004, and 
the EMC-processed SSMI and SSMIS from 2004 to 2019. Constant observation error application 
to the SSMR and EMC-processed SSMI and SSMIS data sets results in an increased uncertainty 
level in marginal ice concentration areas. Figure 8f shows that the global mean of the absolute 
errors of the OmB and OmA statistics increase during the Arctic melting season. Thus, seasonal 
variation in the observation fits to model results is a common feature in the experiment. 

Diagnostic validation 
To evaluate the performance of NG-GODAS, its monthly mean temperature and salinity are 

further validated against the UK Met Office Hadley Centre EN4.0.2 [hereafter referred to as EN4; 
Good et al. (2013b)]. The EN4 is an objective monthly analysis based on in situ ocean observations 
and has 42 levels ranging from 5 to 5350 meters in depth on a global 1° x 1° grid from 1990 to 
present. Our evaluation period is 2001-2019, since we consider the EN4 to be more reliable after 
the advent of Argo than before. Also, since a different atmospheric forcing (i.e., bias corrected 
CFSR) is prescribed for the NG-GODAS reanalysis before 2000, the evaluations for 2001-2019 will be 
less impacted by the forcing adjustment. NG-GODAS performance is compared to two NOAA 
ocean analyses – GODAS [Behringer and Xue (2004)] and CFSR [Saha et al. (2010)], which are 
used in many operations at NOAA (e.g., GODAS is used as a monitoring tool for global ocean 
status, ENSO diagnostic discussions, MJO status and so on; CFSR is used to initialize the CFSv2, 
the current NOAA subseasonal and seasonal prediction system). 

Figure 12 demonstrates the mean difference in the upper ocean temperature and salinity relative 
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to the EN4. For temperature, GODAS (Figure 12a) and CFSR (Figure 12b) have a generally 
comparable bias amplitude over most regions, even though CFSR presents a larger warm bias in the 
equatorial and far eastern Pacific and a large cold bias in the tropical north Atlantic. The 
temperature bias in NG-GODAS (Figure 12c) is smaller than GODAS and CFSR over the Gulf 
Stream region, the equatorial Indian and Pacific regions and the Antarctic Circumpolar Current 
(ACC) region. One exception is the equatorial Atlantic when NG-GODAS has a slightly larger 
temperature bias than GODAS. For salinity, there are large biases over the global ocean in GODAS 
(Figure 12d) and CFSR (Figure 12e), such as the freshening bias over the entire tropical ocean, 
and the CFSR has even a larger bias. The large salinity bias in mean states is somewhat unexpected 
for the GODAS and CFSR, because even though they do not assimilate real salinity profiles, they 
do assimilate synthetic salinity profiles that are generated using temperature profiles and 
climatological T-S relationships. The procedure is supposed to make the model salinity climatology 
close to the observed. For salinity in NG-GODAS (Figure 12f), the mean bias is clearly smaller than 
that for GODAS and CFSR over all global ocean. Over the equatorial Atlantic, however, NG-GODAS 
presents a clear salinity bias as for temperature. For the middle-depth ocean (Figure 13), the 
temperature mean bias pattern for the three reanalyses is generally similar to their upper ocean 
counterparts (Figure 12), and NG-GODAS (CFSR) demonstrates the smallest (largest) biases. The 
mean salinity biases at mid-depth are different from those at the upper ocean, with salty biases 
appearing in most oceans. Among the three reanalysis products, CFSR demonstrates the largest 
salinity difference from the EN4 and NG-GODAS presents the highest consistency. 

 
 

Fig. 12. Mean difference of (a-c) temperature (unit: °C) and (d-f) salinity (unit: psu) vertically averaged over 0-
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300m during 2001-2019 with respect to the EN4 analysis in (a, d) GODAS, (b, e) CFSR, and (c, f) NG-GODAS. 

To highlight the performance of NG-GODAS in the tropical Pacific, Figure 14 and Figure 15 show 
the vertical structures of the temperature and salinity biases along the equator and a meridional 
section (115°W) in the eastern Pacific, respectively. Along the equator (Figure 14), both GODAS 
and CFSR present the large and warm biases together with freshening biases along the thermocline 
depth. In comparison, CFSR demonstrates larger biases, with temperature (salinity) biases reaching 
1.5°C (-0.3psu). The biases are significantly improved in NG-GODAS, with temperature (salinity) 
biases mostly smaller than 0.5°C (0.1psu). The superiority of NG-GODAS over GODAS and CFSR 
is also evident in the meridional-vertical sections of temperature and salinity biases (Figure 15). 

 

Fig. 13. As in Fig. 12, but for (a-c) temperature (unit: °C) and (d-f) salinity (unit: psu) averaged over 300-700m. 
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Fig. 14. Mean difference of (a-c) temperature (unit: °C) and (d-f) salinity (unit: psu) along the equator during 2001-
2019 with respect to the EN4 analysis in (a, d) GODAS, (b, e) CFSR, and (c, f) NG-GODAS. 

 

Fig. 15. Mean difference of a)-c) temperature (unit: °C) and d)-f) salinity (unit: psu) along 115oW during 2001-2019 
with respect to the EN4 analysis in a), d) GODAS, b), e) CFSR, and c), f) NG-GODAS. 
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Figures 16 ~ 19 show the root-mean-squared (RMS) differences of temperature and salinity 
relative to the EN4 analysis for the upper (0-300m) ocean, middle-depth (300-700m) ocean, and 
the zonal-vertical and meridional-vertical sections. As expected from the salinity assimilation 
procedure in GODAS and CFSR, NG-GODAS presents a smaller RMS difference in salinity. For 
temperature, NG-GODAS also demonstrates a smaller RMS difference than CFSR and GODAS.  

 
Fig. 16. As in Fig. 12, but for root-mean-squared difference relative to the EN4 analysis. 

One exception is over the equatorial Atlantic where GODAS is slightly better than NG-GODAS: 
compare Figures 16a and 17a to Figs 16c and 17c. A previous diagnostic [Fig. 1 in Zhu et al. 
(2012b)] suggested that current ocean analysis systems tend to contain much larger uncertainties 
(noise) in estimating the subsurface oceanic state in the tropical Atlantic compared to the other two 
tropical oceans, and they are even larger than in the Northern Hemisphere extratropical oceans in the 
Northern Hemisphere. Zhu et al. (2012a) also found that GODAS is among the best in representing 
the tropical Atlantic Ocean state. It is noted that one uniqueness of GODAS [Behringer and Xue 
(2004)] is its application of the incremental analysis update (IAU) scheme, i.e., the analysis 
increments were gradually incorporated into the model at each time step within an assimilation 
cycle. In NG-GODAS, by contrast, the analysis increments were inserted into the model only once 
within an assimilation cycle. The procedure could bring strong shocks in the model at each 
assimilation cycle, which could result in artificial variations in the ocean. Thus, the application of 
IAU might be a reason for the better performance of GODAS than NG-GODAS in the equatorial 
Atlantic where the noise level is high. Overall, the above validations against the EN4 suggest that 
NG-GODAS present a significant advance over the current NOAA operational ocean analyses – 
GODAS and CFSR. Currently, we are testing the IAU scheme in NG-GODAS, which we hope will 
improve its performance in the equatorial Atlantic. 
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Fig. 17. As in Fig. 13, but for root-mean-squared difference relative to the EN4 analysis. 

 
Fig. 18. As in Fig. 12, but for root-mean-squared difference relative to the EN4 analysis. 
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Fig. 19. As in Fig. 13, but for root-mean-squared difference relative to the EN4 analysis. 

We also evaluated the Atlantic Meridional Overturning Circulation (AMOC) at 26.5N and 
compared it with observational estimates from the Rapid Climate Change programme (RAPID). 
In order to make the most appropriate comparisons to RAPID observations, we calculated NG- 
GODAS AMOC transports using an analogous “RAPID-style” methodology proposed in Roberts 
et al. (2013). Velocities in the Florida Straits and the “western boundary wedge” (WBW) are 
specified to be the same as model velocities. In the RAPID array, the WBW is the region west of 
76.75W. In the NG-GODAS setup, the WBW is defined as the region west of 76.50W. The model 
region is expanded by an additional one grid-point to ensure that the simulated western boundary 
current is contained within the model WBW. The Ekman transport is derived from the modeled 
wind stress. The Upper mid-ocean transport (UMO) is split into two components, a sum of mid- 
ocean geostrophic transport (from 75.50W eastward to 10.50W), and a WBW transport. Finally, 
a mass-compensation term is applied as a uniform velocity added to the geostrophic velocity field 
that ensures zero net-flow across the section. The AMOC transport is stronger in the NG-GODAS 
3DVar run with a maximum volume transport of 16 Sv at 26.5N, compared with the NG-GODAS- 
free-run simulation that has a maximum volume transport of 11.3 Sv at 26.5N (Figure 20). The 
directly measured maximum AMOC transport at 26°N from the RAPID data is about 16.7 Sv for 
the 2005–2017 period. The simulated AMOC penetration depth from the NG-GODAS 3DVar run 
is deeper than from the NG-GODAS-free-run, and is close to the observational estimate at 26.5N 
from the RAPID array (Figure 20). 
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Fig. 20. Time mean (2005-2017) Atlantic meridional overturning stream functions at 26.5°N from RAPID (black), 
from NG-GODAS modeled velocity field (light blue), and from RAPID-style calculation (dark blue); Left: NG-
GODAS-free-run (noda run), Right: NG-GODAS (3dvar run) 

The 3DVar sea ice concentration reanalysis result generally provides a better representation of 
the sea ice extent when compared to the model free run. In Figure 21 and 22, the seasonal sea ice 
concentration fields computed from the 3DVar analysis and model free runs are compared against 
the Near-Real-Time NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice 
Concentration (https://nsidc.org/data/g10016/versions/2) data set for the 2018-2019 time period. 
For both marginal and packed sea ice zones, the experiment result demonstrates the 3DVar analysis’s 
ability to constrain the seasonal sea ice anomalies observed in the model free run. Also, the figures 
show that the data assimilation contribution in the Arctic and Antarctic areas is significantly affected 
by the sea ice thermodynamics and dynamics conditions including ocean and air interactions and 
surrounding geographical features. In the Arctic, sea ice extent is limited by the surrounding 
continents. However, the Antarctic has opposite land-ocean geography where the sea ice forms at 
latitudes further from the South Pole and expands freely into the surrounding ocean. While the 
Arctic sea ice concentration consistently improves with the data assimilation, only moderate 
improvement is observed in the Antarctic area. Sea ice thickness has a direct impact on the 
atmosphere-ocean heat transfer. The computational results of the total sea ice volumes are compared 
in Figure 23. Although only sea ice concentration data sets are assimilated in the experiment, 3DVar 
analysis results provide improved sea ice volume at the Arctic when the results are compared to 
the model free run and the GIOMAS data. However, it is noted that the NG-GODAS seasonal 
maximum sea ice volume is significantly lower than the one calculated from the GIOMAS data. 
For the Arctic, most of the volume reduction for NG-GODAS occurs around 1980, and beyond that 
there is no clear trend. In the Antarctic, a decades-long overall sea ice increase in the Antarctic 
area reversed in 2014 and the sea ice extent began to decline from 2014 and stayed at a record low 
in 2017-2019 time period. Both 3DVar reanalysis and model free results capture a reversed short-
term sea ice volume trend that the GIOMAS data set reveals during the 2014-2017 time period. 
However, marginal contribution of the sea ice concentration data assimilation to the sea ice volume 
change is found in the Antarctic as well. However, its statistical significance still requires further 
investigation. 
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Fig. 21. Arctic seasonal mean sea ice concentration, computed for the 2018-2019 time period: a) model free run DJF 
(December-January-February), b) 3DVar DJF, c) NSIDC DJF, d) model free JJA (Jun-July-August), e) 3DVar JJA, 
and f) NSIDC JJA. 

 
Fig. 22. Antarctic seasonal mean sea ice concentration, computed for the 2018-2019 time period: a) model 
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free run DJF (December-January-February), b) 3DVar DJF, c) NSIDC DJF, d) model free JJA (Jun-July-August) 
e) 3DVar JJA, and f) NSIDC JJA. 

 
Fig. 23. Comparison of total hemispheric sea ice volume computed from model free run, 3DVar, and GIOMAS data sets. 

7. Summary 
The NG-GODAS prototype reanalysis experiment from 1979 to 2019 was conducted for the 

assimilation of extensive marine observation data sets, including in-situ temperature and salinity, 
sea ice concentration, satellite SST and SSS retrievals, and ADT data sets. The coupled sea ice - 
ocean reanalysis results were compared with the current operational analysis systems and validated 
against EN4 and NSIDC data sets. Tuning requirements of the UFS CICE6 model configuration 
were identified to address sea ice mass balance and stability issues along Antarctic coastal grid 
points. A climatology sea ice thickness constraint was applied to address divergence in the CICE6 
sea ice thickness calculation. The UFS modeling component version updates and modernized 
JEDI data assimilation system contributed to the improved ocean analysis performance of the NG-
GODAS reanalysis run. This result sets the JEDI-based data assimilation system as a building block 
for the marine component of the future NOAA UFS weakly coupled DA system (GFSv17). 
Conjointly with the on-going effort to apply the NG-GODAS system to support the UFS S2S 
initialization project, UFS community feedback will further accelerate the R2O process toward 
the development of the next generation operational numerical weather prediction system at the 
National Weather Service (NWS). Key technical conclusions are summarized as follows: 

• The NG-GODAS reanalysis results are compared with the current NOAA ocean analysis 
systems, CFSR and GODAS, and validated against the EN4 product. For both temperature and 
salinity fields, mean biases and RMSE differences are improved at global scales, but slightly 
increase over the equatorial Atlantic. Further improvement is anticipated with additional 
options, such as the IAU capability. 

• Large-scale ocean circulation and transport patterns are improved with the 3DVar initialization. 
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Compared with the model free-run, the reanalysis results show an improved AMOC transport 
calculation, close to RAPID observations. The simulated NG-GODAS AMOC penetration depth is 
deeper than the model free-run result and closer to the observational estimate obtained from the RAPID 
array at 26.5°N. 

• The NG-GODAS sea ice - ocean coupled assimilation capability demonstrates improved sea 
ice predictions in the Arctic. However, only a moderate improvement is found in the Antarctic. 

• Sea ice volume calculation results closely follow the GIOMAS product, especially in the 
Arctic. However, both model free-run and 3DVar analysis results show that considerably 
lower total ice volumes are obtained by the NG-GODAS. 

• The observation-minus-model statistics of the SST and in-situ temperature data sets show 
model cold bias near the surface layers and warm bias at sub-surface layers. At high latitudes, 
seasonally varying warm bias is observed in ocean surface layers. 

• Satellite SSS OmB and OmA statistics are compared with in-situ salinity assimilation results. 
Seasonally-varying systematic errors and negative bias are observed in the SMOS SSS statis- 
tics. However, such problems are largely contained with the SMAP and Argo salinity data 
sets. 

• Global mean absolute OmB errors of the SSMR, SSMI, and SSMIS sea ice concentration data 
sets increase during the melting season. Additional observation filter options are needed to 
enhance the robustness of the sea ice assimilation results in marginal sea ice areas. 
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APPENDIX A 

JEDI SOCA input yaml files 
SOCA 3DVar configuration 
soca_3dvar.yaml 
# the list of background files depends on whether  we’re using ice 
_ :   &bkg_files_ocn ocn_filename : MOM.res.nc 
_ :   &bkg_files_ocn_ice  

ice_filename : cice.res.nc 
<< :  ∗bkg_files_ocn 

_ : &bkg_files ∗bkg_files___DOMAINS__ 
# placeholders used by the obs yaml files that will be placed 
# where _OBSERVATIONS_ token is 
_ : &obs_distribution RoundRobin 
_ : &obs_error diagonal 
_ : &obs_land_mask 

filter: Domain Check 
where: 
− variable: {name: s ea_area_ frac t ion@GeoVaLs} 

minvalue: 0.9 
_ : &observations 

  OBSERVATIONS   
_ : &soca_vars   DA_VARIABLES   
variational: 

 minimizer: 
algorithm: RPCG 
 iterations: 

− geometry: 
mom6_input_nml: mom_input.nml 

linear model: 
variable change: Identity 
 name: IdTLM 
tstep: PT1H 
 lm variables: ∗soca_vars 
 ninner: 150 

gradient norm reduction: 1e−3 
 test: on 
diagnostics : 
 departures: ombg 
online diagnostics: 
 write increment: true 
increment: 
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datadir: Data 
date: &bkg_date   DA_ANA_DATE   
exp: var.iter1 
 type: incr  

output: 
datadir: Data 
exp: 3dvar 
 type: an 

final: 
diagnostics: 
 departures: oman 

cost function: 
cost type: 3D−Var 
window begin:   DA_WINDOW_START   
window length:   DA_WINDOW_LENGTH   
 analysis variables: ∗soca_vars 
 geometry: 

mom6_input_nml: mom_input.nml 
 variable change: Ana2Model #Identity 
 rotate: 

u: [uocn] 
v: [vocn] 

background: 
read_from_file: 1 
basename: ./bkg/ 
date: &bkg_date   DA_ANA_DATE  
<< : ∗bkg_files 
 state variables: ∗ soca_vars 

background error: 
verbosity: main 
covariance model: SocaError 
 datadir: ./bump 
strategy: specific_univariate 
 load_nicas: 1 
mpicom:  2 
date: ∗bkg_date 
analysis variables: ∗soca_vars 
 variable changes: 
− variable change: VertConvSOCA 

Lz_min: 0.0 
Lz_mld: 0 
Lz_mld_max: 1.0 
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scale_layer_thick: 5 
input variables: ∗soca_vars  
output variables: ∗soca_vars 

− variablechange: BkgErrFILT 
    ocean_depth_min: 0 #  [m] 

rescale_bkgerr: 1.0 
efold_z: 2500.0 #  [m] 
input variables: ∗soca_vars  
output variables: ∗soca_vars 

− variable change: BkgErrGODAS 
t_min: 0.1 
t_max: 2.0 
t_dz: 20.0 
t_efold: 500.0 
s_min: 0.0 
s_max: 0.25 
ssh_min: 0.0 # value at EQ 
ssh_max: 0.0 # value in Extratropics 
ssh_phi_ex: 20 # lat of transition from extratropics  
cicen_min: 0.1 
cicen_max: 0.1 
hicen_min: 0.1 
hicen_max: 0.1 
input variables: ∗soca_vars  
output variables: ∗soca_vars 

− variable change: HorizFiltSOCA 
niter:  2 
filter variables: ∗soca_vars  
input variables: ∗soca_vars  
output variables: ∗soca_vars 

− variable change: BalanceSOCA 
dsdtmax: 0.1 
dsdzmin: 3.0e−6 
dtdzmin: 1.0e−6  
nlayers: 10 
input variables: ∗soca_vars  
output variables: ∗soca_vars 

observations: ∗observations 
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APPENDIX B 
 

Implementation of ocean biogeochemical modeling and ocean color data assimilation in the 
NG-GODAS reanalysis 

B1. Introduction 
Ocean biogeochemical and ecological forecasts provide early warning of ecosystem changes and 

their impacts on water quality, human health, and/or regional economies, allowing for sufficient 
lead time to develop mitigation strategies and take corrective actions. Ocean biogeochemical and 
ecological processes also provide important geophysical feedback to weather and climate systems, 
through complex ocean biophysical and ocean-atmosphere interactions. The inability to represent 
ocean biogeochemical and ecological processes and their feedback to oceanic and atmospheric 
physics in the current generation of operational forecast systems, as well as our limited 
understanding of the underlying mechanisms of past extreme weather and ecological events, 
reduces our capability to predict critical weather conditions and ecological “tipping points” and 
affects management effectiveness at both global and regional scales. Through a project funded by 
the JPSS Proving Ground and Risk Reduction (PGRR) program, we developed and evaluated 
ocean biogeochemical modeling and ocean color data assimilation tools as well as the required 
infrastructure within the NG-GODAS in support of NOAA/NCEP’s operational weather, S2S, and 
ecological predictions. This appendix provides an overview of key milestones of the 
implementation of the BLING-based ocean biogeochemistry assimilation capability for the 
application of the satellite-based ocean color observations in the NG-GODAS framework. The 
released ocean biogeochemical reanalysis file set is the 2003-2013 UFS-DATM-MOM6-
BLINGv2-CICE6 (at a horizontal resolution of 1°) ocean reanalysis 24-hour cycle output. Analyzed 
ocean biogeochemical variables include chlorophyll (Chl-a), particulate organic phosphate (POP), and 
dissolved inorganic phosphate (DIP) concentrations. This file set is in contrast to the 2003-2013 
ocean physics only, UFS-DATM-MOM6-CICE6 ocean reanalysis output. Both reanalysis 
experiments used identical model configurations and physical ocean observational data sets except 
that the first file set had the BLING model and ocean color data assimilation options enabled. 
Both file sets are publicly available at https://registry.opendata.aws/noaa-ufs-marinereanalysis. 

B2. Ocean biogeochemical model 
Coupled to the MOM6 model component to the UFS system, the biogeochemistry model is 

adapted from NOAA/GFDL’s BLING model (Biogeochemistry with Light, Iron, Nutrients and 
Gas version 2, or BLINGv2). BLINGv2 states are essentially treated as generic tracers in MOM6, 
and so are subject to advective and diffusive transports, as well as source and sink terms from 
boundary fluxes (e.g., atmospheric deposition, riverine inputs) and biogeochemical processes (e.g., 
burial, denitrification). The coupled MOM6-BLINGv2 model has been successfully tested at 
horizontal resolutions of 1° and 0.25° using NG-GODAS. Preliminary results suggest that upper- 
ocean physics (e.g., SST) are moderately sensitive to ocean biogeochemical (e.g., Chl-a) variability 
with a response of up to 1°C in some regions (Figure B1). 
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Fig. B1. a) SeaWiFS Chl-a climatology (Nov.) used to calculate short-wave radiation penetration in the MOM6 
physics-only run; b) MOM6-BLING simulated Chl-a averaged over November 2011; and c) difference in sea surface 
temperature (SST) between the two experiments, suggesting that upper-ocean physics, such as SST, are sensitive to 
Chl-a variability. 

B3. Ocean color data assimilation 
As mentioned in the main text, NG-GODAS employs JEDI-SOCA interface. The JEDI project 

is the backbone for performing data assimilation across the variety of the UFS model applications. 
We further developed the SOCA interface to allow the integration of near-real-time satellite ocean 
color products into MOM6-BLINGv2 simulations. 
Ocean color observations 

Level-2 data streams have been established from NESDIS into NCEP for NOAA-20/VIIRS and S- 
NPP/VIIRS historical and near-real-time ocean color observations (i.e., chlorophyll concentration, 
or Chl-a, and particulate organic carbon, or POC), specifically from NOAA CoastWatch and 
NASA OB.DAAC to NOAA’s Research and Development High-Performance Computing System 
(RDHPCS). The required software to preprocess VIIRS Level-2 ocean color products for basic 
quality control and ingestion by the JEDI system were developed. Specifically, these observations 
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are converted into a unified data format (i.e., IODA compatible) that can be ingested by any model 
employing the JEDI system for data assimilation. 
Chl-a and POC analysis 

To assimilate Chl-a and POC, the corresponding biogeochemical states saved in the model restart 
file are updated during each data assimilation cycle (i.e., 24h) based on increments calculated in 
JEDI/SOCA. Other key states, such as dissolved inorganic phosphate (DIP) concentration, are 
updated by solving BLING internal equations for phytoplankton growth and nutrient limitation 
based on Chl-a or POC increments. The diagonal background error covariance (“B”) matrix for 
the ocean color observations is computed using the SABER-BUMP package of JEDI. For each 
grid-point, the observational error variance will be set to be proportional to the observed values 
[e.g., observational error = 30 for Chl-a; Tsiaras et al. (2017)]. The JEDI-UFO estimates “ocean 
color” properties from the biogeochemical model as the corresponding variables averaged over the 
first optical depth at each grid-point. Figure B2 shows a preliminary Chl-a daily analysis using 
the JEDI-SOCA 3DVAR scheme. We also performed preliminary evaluation of a long-term (10- 
year, 2003-2012) Chl-a analysis using the mentioned 1° ocean physical-biogeochemical analysis 
experiment setup. Figure B3 shows the relative model and analysis bias calculated as the model- 
observational difference divided by observed value at the corresponding location plus a small 
scaling coefficient (0.001). In the experiment, Level-3 Aqua/MODIS Chl-a observations were 
assimilated in the BLING biogeochemical model. The results suggested that daily assimilation of 
ocean color observations reduced the mean relative model Chl-a bias for 24-hr model forecasts 
from approximately 55% to 30% on a global scale. 

 
 

 
 
 

Fig. B2. a) MOM6-BLING simulated “background” Chl-a on 2018/04/15, b) Level-2 Chl-a derived from NOAA-
20/VIIRS imagery on 2018/04/15, which was used for Chl-a assimilation, c) and d) Chl-a increments calculated based 
on the 3DVAR scheme in JEDI/SOCA, shown as absolute increment (c) and percentage change compared to 
“background” (d), respectively. 
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Fig. B3. Coupled ocean physical-biogeochemical analysis experiment results: daily assimilated Level-3 
Aqua/MODIS Chl-a observation count on the top panel. Y-axis on the bottom panel shows global mean absolute relative 
model and analysis biases calculated as model-minus-observation divided by observation with scaling coefficient 
(0.001) added. 
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